
SkABNet: A Data Structure for Efficient Discovery
of Streaming Data for IoT

Philipp Kisters
Department of Computer Science

Universität Hamburg
Hamburg, Germany

philipp.kisters@uni-hamburg.de

Heiko Bornholdt
Department of Computer Science

Universität Hamburg
Hamburg, Germany

heiko.bornholdt@uni-hamburg.de

Janick Edinger
Department of Computer Science

Universität Hamburg
Hamburg, Germany

janick.edinger@uni-hamburg.de

Abstract—Applications in the Internet of Things often make
use of large networks of independent sensor nodes that generate
streams of volatile data. A major challenge in these decentralized
networks is to efficiently discover relevant data providers, which
might be characterized by properties such as their data type,
location, or ownership. Most existing approaches use distributed
data structures, such as distributed hash tables, for the or-
ganization of sensor nodes. However, these systems lack the
ability to consider contextual properties when identifying relevant
data sources. SkipNet a prominent architecture for data storage
and retrieval, provides a scalable overlay network composed of
doubly-linked rings. While the data structure allows to locate
individual nodes in logarithmic complexity, it fails to identify
groups of nodes that share similar characteristics. Thus, in this
paper, we propose SkABNet, an attribute-based extension for
SkipNet which enhances the semantics of the node identifiers
in the network. We introduce additional operators that allow
SkABNet to accept complex search queries including multi-
attribute selections, ranges, and wildcards to find relevant data
providers in its decentralized data structure. Further, we define
a search algorithm that performs searches with significantly less
messages than comparable searches in SkipNet.

Index Terms—Distributed information systems, Internet of
Things, Overlay networks

I. INTRODUCTION

Internet of Things (IoT) based applications usually consists
of huge amounts of devices, most of which are made available
to users and services via the Internet. Many of these IoT
devices use a wide variety of sensors and, thus, generate a large
number of volatile data streams. One of the biggest challenges
posed by the volume of devices is to find relevant information
efficiently [1]. In this context, three main characteristics of
such data are identified that add complexity to the discovery
of streaming data in IoT: its volatility, its locality, and its
dependence on other data [2].

Data volatility renders caching and replication impossible
as sensor data quickly becomes stale. Data locality results in
searches, which target groups of devices located physically
close to each other. Dependence on other data further results
in searches that not only match a single data type but groups
of data types influencing each other. Therefore, searches in
the IoT context are expected to target whole groups of data
providers that either share common attributes like location and
type or are related by data they provide.

To overcome these challenges, different approaches have
been presented already: centralized approaches like [3] and
[4] utilize a discovery service provided by a central entity.
These central entities allow for fast lookup times and minimal
message overhead. On the contrary, a central entity creates a
bottleneck and poses a single point of failure for large IoT
networks possibly decreasing the availability of data streams.
Due to the ever-increasing number of IoT devices and available
data, the load of this central entity will constantly increase,
which lead to reducing its performance or increasing the cost
to operate it. While decentralized approaches increase the over-
all management overhead between IoT devices, they decrease
the cost by evenly sharing responsibility between participating
devices. Further, due to various repair mechanisms higher
resilience can be achieved. Decentralized approaches can be
grouped in structured and unstructured networks. Structured
networks define rules how participating devices join and how
they are arranged within a network. Unstructured networks de-
fine no such rules, which decreases the management overhead,
but they cannot guarantee complete search results without
flooding the whole network.

Unstructured networks based on the geographic distributed
of IoT devices as presented in [5], [6]. They focus on local
service discovery resulting in fast search results, of nearby
services. This comes with the disadvantage that services that
lie outside of searches parts of the network are not found, even
if they are present.

Structured networks are either based on Distributed Hash
Table (DHT) or distributed skip lists. DHTs such as [7]–[10]
use hashed identifiers to evenly place data on participating
nodes. However, two important aspects get lost when using
hashed identifiers. (1) to find relevant data, the exact identifier
must be known, since a small change in the identifier results in
a completely different hash and therefore a different location
within the network. (2) due to the hashing of identifiers,
similar data is placed at completly different locations within a
network. This further eliminates the coupling of data creation
and storage and, thus, the control over data by its owner.

Skip list-based networks such as [11], [12] provide a data
structure based on one dimensional user-selected identifiers.
These identifiers allow a more descriptive naming scheme such
as hierarchical namespaces based on entities, or spacial and

979-8-3503-3618-4/23/$31.00 ©2023 IEEE

20
23

 3
2n

d
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 a
nd

 N
et

w
or

ks
 (I

CC
CN

) |
 9

79
-8

-3
50

3-
36

18
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
CC

N
58

02
4.

20
23

.1
02

30
16

9

Authorized licensed use limited to: Bibliothekssystem Universitaet Hamburg. Downloaded on October 11,2023 at 07:58:40 UTC from IEEE Xplore. Restrictions apply.

time-related data that can be searched efficiently. Through
these user-selected identifiers, participating IoT devices can
decide where their provided data is stored (content locality).
Messages between two IoT devices from within the same
namespace do not leave their namespace (path locality).
Likewise, queries matching IoT devices based on a common
namespace within the identifier, so called range queries, are
supported allowing for searches selecting neighboring nodes
within the network. While these range queries allow for
searches of groups of IoT devices, these ranges are very
limited in their use-cases and depend on the descriptiveness of
the one dimensional identifiers since these IoT devices must
share a common namespace.

This paper presents Attribute-Based SkipNet (SkABNet), an
attribute-based architecture extending SkipNet [11] to provide
three main enhancements over the original data structure: First,
SkABNet enhances the user-selected identifiers by introducing
attribute-value pairs. This allows to include contextual infor-
mation within identifiers and therefore grouping of similar
nodes based on different attributes. Second, compared to range
queries provided by SkipNet, more complex searches can
be defined in SkABNet, such as multi-attribute selections,
ranges, wildcards, and any combination of the above. Further,
SkABNet performs searches in a more efficient manner than
SkipNet, resulting in an overall reduced lookup time.

The remainder of this paper is structured as follows: Sec. II
gives a short overview of related work. Sec. III introduces our
overlay architecture and the basic SkipNet. Sec. IV describes
the proposal of SkABNet as an appropriate data structure for
distributed sensor networks, as well as related enhancements.
Finally, Sec. V discusses the scalability of SkABNet. Sec. VI
concludes this paper and provides an outlook for future work.

II. RELATED WORK

Efficient discovery of nodes defined by a set of describing
attributes increases in importance with the number of attributes
and the network size. Existing discovery approaches in dis-
tributed systems can be classified into two categories: Finding
static data defined by unique identifiers and finding specific
nodes participating in the network. In the first category, DHT-
based approaches [7]–[10] were used in order to improve
load balancing and achieve faster lookup times through data
caching and replication. Due to the volatility of generated data
within the IoT context, these methods can only be used to a
limited extent, since caches and replicas have to be updated
and replaced continuously. Similarly, searches in IoT are rarely
performed for a single data point, due to its dependence on
other data as mentioned before. Instead, searches for categories
of data from different IoT devices are to be expected. This
indicates that full identifiers are most often unknown when
starting a search. Instead, descriptive attributes are used to
search for matching nodes.

A. DHT-based Networks

More recent research focuses on discovering nodes based
on one or multiple attributes. S. Cirani et al. propose an

architecture based on a DHT utilizing gateway nodes with a
stable internet connection [13]. Sensors connect with a locally
managed gateway node, which participates in a network based
on a distributed location service [14] and distributed geo-
graphic table [15]. Nodes can be efficiently discovered based
on their physical location. However, other attributes (such as
sensor type) cannot be used for the discovery.

Also based on a DHT, F. Paganelli and D. Parlanti propose
a discovery service which is able to search for multi-attribute
range queries [16]. To achieve this, the authors map multidi-
mensional attributes into a one-dimensional namespace using
space filling curves. The resulting identifiers are then sorted us-
ing a Prefix Hash Tree (PHT). Finally, the PHT node identifiers
are hashed and distributed over a DHT. Resulting in an equally
distributed load across the network while still enabling range
queries performed over the PHT. In addition, multi-attribute
searches are possible, with the drawback of potential false
positives, which have to be filtered out afterwards. While this
work allows for multi-attribute searches, false positives and the
repetitive use of the underlying get() on the DHT leads to an
unnecessary high load of messages. Furthermore, no selection
of multiple specific attributes values is possible (e.g. sensors
of type humidity or temperature).

B. Skiplist-based approaches

In parallel approaches utilizing distributed skip lists [17]
emerged. Harvey et al. [11] and Aspnes and Shah [12] inde-
pendently introduced a distributed network architecture based
on user-selected identifiers. These user-selected identifiers
allow for more descriptive identifiers and group similar content
within the network. Further range queries based on these
identifiers are supported, to find all nodes within a network
that share a common prefix in their identifiers.

Li et al. propose a locality-preserving context-aware service
discovery called ”LOCA” [18] based on distributed skip lists.
The authors focus on reducing required message hops for
queries within an organizational domain. Therefore, they intro-
duced a more efficient naming scheme for services. While this
effectively preserves locality and integrity within the specified
organizational domains, an ontological model is required to
receive all relevant services. While range queries are supported
by SkipNets by default, Li et al. focus on an ontology driven
discovery to find relevant services based on different criteria.
A drawback within this approach is that each service has to
be contacted to evaluate whether all required criteria are met.

Ishi et al. [19] introduced bounded range queries, allowing
for faster search results targeting a range of nodes, by splitting
search messages into multiple subqueries. This approach has
been further optimized by Banno and Shudo [20], to ”reduce
the average path length by roughly 30%”. While these exten-
sions enhance the efficiency of range queries, selections and
ranges on multiple attributes are not supported.

However, all previously presented approaches lack the abil-
ity to facilitate selection queries on multiple attributes. To
allow for multi-range queries, additional overlays are needed
and multiple search queries may have to be created. This

Authorized licensed use limited to: Bibliothekssystem Universitaet Hamburg. Downloaded on October 11,2023 at 07:58:40 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Discovery architecture of streaming data based on a
SkABNet.

further increases the overall messages overhead. Due to the
locality-preserving property of SkipNets and its possibility
to define range queries, we selected this data structure as a
foundation of our attribute-based approach.

III. OVERLAY NETWORKS FOR IOT

Organizing a large number of IoT data providers requires
a scalable network overlay that allows to discover available
publishers and subscribe to their data streams. The overall
architecture of such a decentralized system (Fig. 1) is as
follows: Geographically distributed publishers own sensors
that generate data streams. In absence of a centralized data
manager, publishers organize these data sources via a de-
centralized data structure, which in our case, is a network
called SkABNet. Therefore, each publisher participates in
the network, by publishing information about provided data
streams (1) and deploying nodes in the network representing
described data streams (2). Data subscribers, who have a
particular interest in some of these data streams (e.g., all air
pollution data in Manhattan), search for relevant nodes within
this network. They define a parameterized search query (3)
that results in a set of publisher nodes providing the requested
data streams of interest (4). The exchange of collected data
itself is not part of the SkABNet network, but can look like
the following: Subscribers can now issue a subscription on
discovered data sources (5), which, from this point on forward
data streams to the subscriber (6) who use these to provide
various services.

To organize these nodes in a decentralized data structure
SkABNet augments the architecture of SkipNet [11]. SkipNet
is a prominent overlay network based on a distributed skip
list [17]. Each node has two identifiers: a user-selected al-
phanumeric ID (content ID) and a randomly generated unique
binary numeric ID. For the remainder of this section we will
refer to the SkipNet architecture as depicted in Fig. 2.

Nodes are located on multiple double-linked rings with each
level halving the set of nodes based on their numeric ID.
Starting at level 0, a single ring contains all participating

Ring 00 Ring 01 Ring 10 Ring 11

Ring 0 Ring 1

Root Ring

A T
M

X Z

O D

V

A T

M

X Z

O D

V
M

X

A T

D O

VZ
M

X

TA

D O

VZ

Ring
000

Ring
001

Ring
010

Ring
011

Ring
100

Ring
101

Ring
110

Ring
111

Level
3

Level
2

Level
1

Level
0

Fig. 2: The SkipNet architecture arranges nodes onto rings,
each halving the ring of the underlying layer [11].

nodes. The following level is comprised of two rings each
with 50% of the nodes, level 2 already has 4 rings with 25%
of the nodes respectively, and so forth. Each node stores its
adjacent nodes (neighbors) from each of these rings in its
neighbor tables. Due to the randomly generated numeric IDs,
neighbors on higher ring levels will have a large distance on
the level-0 ring allowing to skip neighbors to find a searched
node in O(log n) hops where n is the total number of nodes
in the network.

The user-selected content IDs are then used to order nodes
within each ring. This ordering ensures that nodes with iden-
tical prefixes in their content ID are adjacent on all shared
rings. Messages targeting nodes with identical prefixes can be
sent via nodes containing this prefix only. Additionally, all
nodes with identical prefixes are found without leaving the
prefix-based namespace.

In order to find nodes within a SkipNet for a defined content
ID, a node starts the search at their highest-level ring to find
another node with a content ID located between its own and
the target. If a closer node is found the search is forwarded
until either the searched node has been reached or if no closer
node exists in the level-0 ring, which means that no node with
the searched content ID exists.

Manhattan.Broadway#657

↪→ .T emperature.Sensor001 (1)
Q :: Manhattan.Broadway. (2)

Multiple nodes can be searched using range queries on a
common prefix within their content ID. Listing (1) shows an
example content ID representing a data provider collecting
temperature data at the Broadway in Manhattan. Content IDs
in this form allow for range queries matching all data providers
in Manhattan that are located at the Broadway by using the
range queries shown in Listing (2). To find all matching nodes,
the search is forwarded to the first matching node utilizing the
content ID routing algorithm. The found node finally forwards
the search on the lowest level ring until all nodes with the
given prefix are found.

Authorized licensed use limited to: Bibliothekssystem Universitaet Hamburg. Downloaded on October 11,2023 at 07:58:40 UTC from IEEE Xplore. Restrictions apply.

IV. SKABNET ARCHITECTURE

We propose SkABNet, a distributed data structure that
builds upon the idea of SkipNet and introduces attribute-based
identifiers. This extension does not only allow to express more
complex search queries but also execute these queries more
efficiently. This makes it more convenient for users searching
for data streams defined by multiple attributes and reduces the
total number of messages to find all matching data streams.

To achieve this, we extend the SkipNet architecture with
three distinct enhancements: First, we provide attribute-based
identifiers allowing for more expressive identifiers by dividing
them into a list of attribute-value pairs. Further we utilize
the introduced attribute-value pairs to create more powerful
search queries. By dividing identifiers into a list of attribute-
value pairs, each attribute can be interpreted individually and
thus allow searches on single or combinations of attribute-
value pairs. Second, we introduce four attribute-based search
operators that enable ranges and selections on individual
attributes. Lastly, to optimize for common search patterns we
represent data providers by multiple attribute compositions
reducing required messages to find matching nodes.

In the following we will explain each enhancement on an
example of a city-wide distributed IoT network. None the less
this extension benefits all distributed networks that require
discovery of individual and groups of participating nodes that
can be described by a set of attributes.

A. Attribute-Based Identifiers

As mentioned before SkABNet uses attribute-value pairs as
identifiers. Attributes can be any descriptive properties about
the data source such as its location, sensor type, or measuring
interval. When publishers make their data streams available
to the network, they enter alphanumeric values for each
attribute to make the data source identifiable for subscribers
in the network. The choice of attributes is similar for each
publisher and subscriber in the network and is defined by
the domain. The only requirement SkABNet has for attribute-
based identifiers is, that these need to be unique, therefore, an
attribute representing a UUID should exist to make sure that all
participating nodes are described by a unique identifier. A net-
work for sensor data collected by private device owners could,
e.g., require the address, sensor type, and measuring interval
of the data source. Networks in other domains might require a
completely different set or attributes. While, technically, each
attribute contains alphanumeric values, some attributes may
also require a particular data format. For example, longitude
and latitude should be stated as floating point numbers. This
can be verified while nodes are registered.

Having independent attribute-value pairs makes it possible
to put the attributes in arbitrary order. In contrast to SkipNet,
where the identifier is ultimately defined at node creation,
SkABNet allows each network to define a unique order of
attributes without requiring any further input from the pub-
lishers. This order can have a significant impact on the search
efficiency as we discuss later in this paper.

The idea of attribute-value pairs also benefits subscribers
who search the network for relevant data streams. They do not
have to define search queries that exactly match the identifiers
as required in SkipNet. Instead, they can define search values
for some attributes and omit those which are irrelevant to them.
The latter will be replaced by wildcards when the search query
is executed.

Listing (3) shows the structure of an SkABNet identifier.
The delimiter ”/” separates attributes and values as well as
attribute-value pairs.

/Dist/Manhattan/St/Broadway/No/657/

↪→ Type/Temperature/UUID/Sensor001 (3)

B. Attribute-Based Search Queries

Subscribers use search queries in SkABNet to lookup rele-
vant data streams. They define values for the attributes defined
by a network. When the attribute values of the data source
match the query, this data source is considered relevant and
its publisher info is sent to the subscriber.

Search queries can have different complexities. In the most
basic scenario, subscribers insert exactly one value for each
attribute. This results in a straightforward search looking for,
e.g., the temperature sensor at a particular place which can
be identified by the combination of a city, a district, a street
name, and a house number. This type of query is also standard
in SkipNet whenever the fully qualified identifier is used.

Continuing the example above, the subscriber may also
want to retrieve data from the humidity sensor in this place.
While this would require two distinct searches in SkipNet, both
using the entire identifier, SkABNet accepts selections as an
input. In the example, the subscriber could insert both values,
temperature and humidity, in the type attribute. SkABNet
interprets this selection and performs a search for nodes
matching either sensor type. Selections can include not only
two but any number of values.

Selections are useful when more than a single value is
relevant. However, when the number of values becomes too
big, selections may be tedious and error-prone to use. A second
drawback of selections is, that each value needs to be known
in advance. What may be realistic for, e.g., districts or streets,
floating point values such as in longitude or latitude attributes
can typically not be provided as a list. For these reasons,
SkABNet provides the range operator which accepts a lower
and an upper bound and matches every value in between. Thus,
subscribers can define large search spaces, even for floating
point numbers, with minimal additional input. In contrast,
SkipNet does not process bounded range queries. Instead, for
every value within the range, a new search has to be started.
This does not only mean that the number of individual searches
can become quite large, it also requires that all values must
be discrete and known in advance.

There are many scenarios where some attributes are of
no interest for the subscriber. When looking for, e.g., the
entire set of temperature sensors in London, there is no need

Authorized licensed use limited to: Bibliothekssystem Universitaet Hamburg. Downloaded on October 11,2023 at 07:58:40 UTC from IEEE Xplore. Restrictions apply.

Operator Description Use-Cases Possible in SkipNet?
Single
Value

Finds nodes where the exact value (Manhattan)
matches for the district attribute.
Example: /dist/Manhattan

This operator is the most basic and is used
to find only specific data providers with the
given value.

Yes. This is the standard search for Skip-
Net.

Selection
|

Finds nodes with values specified in the selec-
tion. Nodes located in between these values are
skipped.
Example: /St/1stAve|Broadway|ParkAve

Most commonly used for alphanumeric val-
ues where several values are of interest.

Partially. Multiple searches have to be per-
formed, one for each element in the selec-
tion.

Range
∼

Specifies a range of values with inclusive bound-
aries. Finds all values that are alphanumerically
ordered between the upper and lower bound.
Example: /No/003 ∼ 065

Most commonly used for numeric values.
Numbers are needed to be padded with lead-
ing zeros so that they are correctly ordered
alphanumerically.

Restricted. Only possible, if all values
within the range are known or by imple-
menting the extention discussed in [19],
[20].

Wildcard
∗

Matches nodes regardless of the value for this
attribute.
Example: /Type/*

Used when attribute is irrelevant for the
search.

Restricted. Only possible, if the wildcard
attribute is at the last position or all values
for this attributes are known.

TABLE I: Search operators in SkABNet. The additional operators (selection, range, wildcard) can be used to intuitively define
complex queries. SkipNet, in contrast, requires manual effort to mimic these queries with multiple single-valued queries.

to indicate which streets and house numbers are relevant.
Instead, all of them should be included in the query. For that,
SkABNet provides a wildcard operator which can be used
as a placeholder for the whole value set of an attribute. In
SkipNet, wildcards are difficult to implement. If the last value
in the identifier is the one that is irrelevant, the stub of the
identifier (without the final value) can be used for a range
query. Wildcards in any other part of the identifier result in
a single search for each attribute value and would also only
work for discrete values which are known in advance.

These additional operators summorized in Table I allow for
a greater flexibility when defining search queries. This ad-
vantage becomes even more apparent when multiple operators
are combined as in the following example. Listing (4) finds
all publishers providing temperature and humidity within dis1
in the ExampleStreet with house numbers ranging between 15
and 25. By considering attribute-value pairs individually, range
and selection operators can be combined in a single search.

Q :: /Dist/dis1/St/ExampleStreet/No/15 ∼ 25 (4)
↪→ /Type/Humidity|Temperature/UUID/∗

To achieve a similar result in a standard SkipNet, an
individual search has to be performed for each combination
of house number and sensor type, leading to a total of twenty
individual searches. In addition, results would have to be
merged, after all searches are completed.

Q :: /Dist/dis1/St/ExampleStreet/No/15

↪→ /Type/Humidity/

Q :: /Dist/dis1/St/ExampleStreet/No/15

↪→ /Type/Temperature/

Q :: /Dist/dis1/St/ExampleStreet/No/16

↪→ /Type/Humidity/

Q :: /Dist/dis1/St/ExampleStreet/No/16

↪→ /Type/Temperature/

. . .

C. Efficient Provider Discovery

Next, we discuss how publishers in SkABNet can be found
efficiently. The position of a node representing a published
data stream is determined by its identifier that consists of
alphanumeric attribute-value pairs. In the lowest-level ring,
all nodes are present and sorted in ascending order (compare
Fig. 2). The standard SkipNet can efficiently discover a single
and a range of nodes, as long as these share a common prefix
as described in Sec. III.

SkABNet allows more complex search queries with selec-
tions, ranges, and wildcards on each attribute. As a result,
matching nodes may be scattered across the lowest-level ring.
To find them efficiently anyway, SkABNet implements a new
search algorithm which dynamically splits a search into mul-
tiple sub-searches each focussing on different parts of lowest-
level ring with possible matching nodes. These sub-searches
are forwarded in parallel while making sure that no node
receives the query twice. We will discuss this algorithm in
the following. Further, we will demonstrate how compositions
of SkABNet identifiers, i.e., the choice and order of attribute-
value pairs, impacts search efficiency.

Search Algorithm

SkABNet’s attribute-based search is divided into two stages.
Within the first stage, the search message is forwarded to the
first node that matches the search query. This part is identical
to the search algorithm in SkipNet. The first matching node
can directly be calculated using the left values of selections
and ranges. Once this node is found, the second stage begins
and the search splits up into branches that search the network
in parallel. We demonstrate this with the example query from
above (see Listing (4)). For easier readability, attribute names
are shortend and single values are omitted. The search query
now looks like this:

Q :: /a1/H|T/a2/15 ∼ 25

Attribute a1 represents the sensor type, which can either
be a Humidity sensor or a Temperature sensor. Attribute a2
represents the house number, where values between 15 and

Authorized licensed use limited to: Bibliothekssystem Universitaet Hamburg. Downloaded on October 11,2023 at 07:58:40 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Nodes forwarding a search to neighbors on different
ring levels to find all matching nodes for the given search.

25 are relevant for the search. The first relevant node will
therefore have the following identifier:

/a1/H/a2/15

To find this node, the search algorithm starts on the node
owned by the subscriber and then checks its neighbors on each
ring. Following SkipNet’s search algorithm skipping irrelevant
nodes to find the first matching one within O(log n) steps.
If no node exists matching this identifier, the last node that
forwarded the search starts the second stage. Here, the search
is split up.

Fig. 3 illustrates the second stage of the search algorithm.
Each bar represents a node. The rows indicate the neighbor
relationships between the nodes. Node /a1/G/a2/35, for
example, is neighbor to node /a1/H/a2/16 on ring levels
0 and 1, to node /a1/H/a2/29 on level 2, and to node
/a1/O/a2/10 on level 3. Arrows indicate to which neigh-
boring nodes a search message is forwarded.

At some point, the search reached the node with the
identifier /a1/G/a2/35, which detects, that no node with
the minimal identifier (/a1/H/a2/15) exists. Therefore, it
starts the second stage and splits up the search message in
order to find all matching nodes in parallel. /a1/G/a2/35
forwards a sub-search to /a1/H/a2/16 that matches the
search. The upper boundary is set to /a1/H/a2/29 since
this is the neighboring node on the next higher ring. Setting
the upper boundary correctly is important to assert that no
nodes receives the same query twice. /a1/H/a2/29 receives
no search message, since no relevant nodes can be located in
between itself and the next neighbor /a1/O/a2/10. However,
a search message is forwarded to node /a1/O/a2/10 even if
it is not matching the search since it is the neighbor on the
highest ring-level with possible matches located behind it.

Node /a1/H/a2/16 received the search message and for-
wards it to its matching neighbor /a1/H/a2/20. The message
is not forwarded to /a1/H/a2/29 as this node is set as the
upper boundary in the received sub-search.

Parallel to that, node /a1/O/a2/10 receives the message
and forwards the search to its neighboring nodes. The neighbor
on the lowest-level ring with the identifier /a1/T/a2/17
matches the search and will receive a sub-search with the
upper boundary /a1/T/a2/20, since this is the neighbor on

the next higher ring-level. The search is also forwarded to the
node /a1/T/a2/20 since it matches the search. /a1/V/a2/56
receives no message since it is located behind the last possible
matching node.

/a1/T/a2/17 received the search from /a1/O/a2/10 and
does not forward it to /a1/T/a2/20 even though it matches
the search, since its identifier was set as the upper boundary
in the search received, this ensures that /a1/T/a2/20 does
not receive search messages multiple times. /a1/T/a2/20
received the search message from /a1/O/a2/10 and has no
other neighboring node matching the search, therefore all
matching publishers represented by these nodes where found.

Algorithm 1 Forwarding searches to multiple neighbors while
no neighbor receives duplicate messages

1: procedure FORWARDSEARCH(Search, NeighborTable)
2: for i← 0, Search.MaxRing do
3: neighbor← NeighborTable[i]
4: if neighbor > Search.UpperBound then
5: return No more neighbors
6: end if
7: nextNeighbor← NeighborTable[i+1]
8: if Search.matches(neighbor) or

matchBetween(neighbor, nextNeighbor) then
9: cSearch← Search

10: cSearch.UpperBound← nextNeighbor
11: cSearch.MaxRing ← i
12: sendSearch(cSearch, neighbor).
13: end if
14: end for
15: end procedure

Algorithm 1 shows how the search message is forwarded
in the second stage of the algorithm. The upper boundary is
initialized with the last matching node which is determined
by using the right values of selections and ranges. Now each
traversed node is checking for relevant neighboring nodes
until the upper boundary is reached (line 5). The search is
forwarded to irrelevant nodes as well, as long as there are
possible relevant ones between a node itself and its neighbors
on the next higher ring (line 8).

Attribute Composition

Following this search algorithm, each relevant publisher can
be found in O(log n) network hops. The overall number of
total messages needed to find all relevant publishers depends
on their distribution within the SkABNet. As this location
is defined by the ordering of their attributes in the identi-
fier, searches targeting different attributes perform differently.
For example, searches specifying attributes located at the
beginning of the identifier have to search smaller parts of
the SkABNet than searches with wildcards or ranges within
attributes at the beginning of the identifier.

Fig. 4 shows the same SkABNet with different placement
of publishers due to the order of the attributes in the identifier.
In Fig. 4a, publishers that have the same attribute a1 value are

Authorized licensed use limited to: Bibliothekssystem Universitaet Hamburg. Downloaded on October 11,2023 at 07:58:40 UTC from IEEE Xplore. Restrictions apply.

(a) Attribute a1 prefixing a2 (b) Attribute a2 prefixing a1

Fig. 4: Distribution of matching nodes (highlighted in black)
within two SkABNets with different ordering of attributes in
their contentID for a search targeting a range of A ∼ C for
a1 and a value of 2 for a2

located next to each other. This makes searches for a single
value in attribute a1 and ranges or selections in a2 efficient. On
the contrary with a range over values for a1 leads to relevant
publishers scattered across the SkABNet as shown in Fig. 4a.
Using a different order of attributes, as displayed in Fig. 4b,
results in the relevant nodes being neighbors in the SkABNet.
However, within this distribution of publishers, searches that
target a specific value for a1 and a range or selection of
values for a2, matching publishers would be scattered again.
Therefore, attribute compositions should be determined by the
most common search pattern to group matching publishers and
make searches more efficient.

In order to optimize for different search queries, a SkABNet
starts multiple representations of publishers via so called
virtual nodes. The concept of virtual nodes was already
introduced in the standard SkipNet as an optional enhance-
ment [11]. Virtual nodes in SkABNet have their own identifier
and therefore allow for different orders of attributes, optimiz-
ing the network for multiple common search queries.

Utilizing different compositions of attributes leads to an-
other challenge: the number of possible compositions increases
factorially with the number of attributes. Therefore, only a
small set of attribute compositions should be started. Appropri-
ate attribute compositions are highly dependent on the context
and should represent the most common search queries. The
number of compositions data providers can start depends on
the hardware used in the context, since managing neighbor
tables within the SkABNet scales about linearly with the
number of compositions. Furthermore, an adequate balance
between an efficient discovery and the overall size of the
SkABNet must be found.

In the previous example, attributes are: district, street, house
number, sensor type, and UUID. In addition, a latitude and
longitude representation would also be helpful to receive
regional data independently from streets or districts. Using any
combination of these seven attributes would already result in
5040 virtual nodes per publisher. This number can be consid-
erably decreased by defining specific attribute compositions
depending on the IoT context. Often, there are attribute pairs
that are always searched in conjunction (e.g., searching by
street name and house numbers). Also, there may be attributes
that are unlikely to occur together such as a postal address and
latitude and longitude representation of a location.

For named attributes such as sensor type, street, and district,
we assume single values and selections in most cases so they
are set at the beginning of our identifiers. To avoid searches
with a wildcard in the beginning of an identifier, since these
result in scattered matching nodes and are therefore costly
hop-wise, we add two more compositions, that either add
the type at the end or omit the district. Attributes that most
likely represent numeric values such as the house number are
added next, since ranges are costly hop-wise and therefore are
preferably used on already limited name groups. The UUID is
already unique and most likely unknown to subscribers and
therefore in most cases replaced by a wildcard, so it will
be appended at the end to fulfil the requirement of unique
identifiers. For the case that specific publishers are searched
for, an additional composition is added only using the UUID
and the sensor type.

/Type/District/Street/HouseNumber/UUID

/District/Street/HouseNumber/Type/UUID

/Type/Street/HouseNumber/UUID

/Type/Latitude/Longitude/UUID

/Type/Longitude/Latitude/UUID

/UUID/Type

Having both orderings for latitude and longitude makes re-
gional searches in the shape of rectangles either aligned with
the latitude or longitude more efficient. Searches covering for
example a wider range of latitude values identifiers with the
longitude attribute before the latitude is chosen, since matching
nodes are located closer together within the SkABNet due to
the smaller range of longitude values.

With these compositions defined, subscribers can search for
publishers with specified attributes and SkABNet orders these
searched attributes according to the most efficient attribute
composition and therefore only searches a fraction of the
overall SkABNet.

V. EVALUATION

In the previous section, we have demonstrated that SkAB-
Net provides more complex searches than SkipNet. We have
further motivated that SkABNet searches are more efficient
than comparable searches in SkipNet that lead to the same
result. Here, we perform a quantitative analysis to compare the
efficiency of both data structures. Therefore, we first evaluate
a set of 14 search queries, which we execute on networks of
different sizes. Second, we provide an numeric example that
shows the effect of different attribute compositions, i.e., what
happens when we change the order of the attribute-value pairs
in the SkABNet identifier.

A. Evaluation Setup

To evaluate our SkABNet architecture, we implemented
a simulation in Omnet++ [21] that generates SkABNets of
various sizes and run arbitrary search queries. Additionally,
we re-implemented SkipNet and its search algorithm as a

Authorized licensed use limited to: Bibliothekssystem Universitaet Hamburg. Downloaded on October 11,2023 at 07:58:40 UTC from IEEE Xplore. Restrictions apply.

Search Name Example Search #SkipNet
Searches

S1 Single Value Searching for a specific publisher participating in the network. 1
S2.1 Selection at the end Searching for publishers in a given district and street providing temperature and humidity data. 2
S2.2 Selection in the middle Searching for publishers in a given district located at 4 different streets providing temperature data. 4
S2.3 Selection at the start Searching for publishers located on a street passing through 5 districts collecting temperature data. 5

S2.4 Multiple Selections Searching for publishers located on 3 different street passing through 3 districts collecting temperature
or humidity data. 18

S3.1 Range at the end Searching for publishers located at a street segment defined by a range of house numbers collecting
temperature data. 19

S3.2 Range in the middle Searching for publishers located within an area defined by a range of streets providing temperature data. 15
S3.3 Range at the start Searching for publishers located on a range of districts providing temperature data. 7

S3.4 Multiple Ranges Searching for publishers located on a street segment defined by a range of house numbers passing through
a range of districts providing temperature data. 57

S4.1 Wildcard at the end Searching for publishers of any data located at a specified street within a single districts. 1
S4.2 Wildcard in the middle Searching for publishers located in a district independent of the street providing temperature data. 40

S4.3 Wildcard at the start Searching for publishers located on a street independent of the district the street traverses providing
temperature data. 10

S5.1 Selection and range Searching for publishers providing temperature, humidity and air quality data located on a street segment
defined by a range of house numbers. 48

S5.2 Selection, range & wildcard Searching for publishers of any data located on a street segment defined by a range of house numbers
traversing two districts. 34

TABLE II: List of searches issued on simulated SkABNets. These searches can be expressed with a single SkABNet search
or a number of SkipNet searches indicated by the last column.

benchmark for SkABNet’s attribute-based search. To quantify
the efficiency of performed searches we compare the total
number of search-related messages transmitted between nodes
in the network (message complexity).

For the simulations, we used the IoT context from above.
Publishers are described with the following attributes: District,
Street, HouseNumber, Type, and a UUID. Each publisher
represents a sensor that publishes a data stream. Sensor types is
randomly chosen from a set of ten possible data types. Further,
sensors are randomly located in a fictive city consisting of ten
districts and 40 streets each containing 200 house numbers.
On initialization, sensors are assigned random values for these
attributes, distributing them uniformely across the city.

B. Search Efficiency

To evaluate SkABNet’s search efficiency, we defined a total
of 14 search queries in which we inserted operators such as
selections, ranges, and wildcards in different positions. We
also defined a set of corresponding queries that are required
to get the same results in the SkipNet. Table II provides an
overview about these queries. The column #SkipNet searches
indicates how many SkipNet queries are required to find the
same publishers. It is to be noted that the translation from
SkABNet searches into multiple SkipNet queries for ranges
and wildcards only works since we know all possible values
for the attributes. Other attributes such as the floating point
values latitude and longitude as representations for a location
could not be represented by a basic SkipNet search due to
infinite amount of values that these attribute can represent.

S1 uses single values for all attributes and, therefore, finds
a single publisher only. All other searches will find exactly
50 publishers. This makes it easier to compare the efficiency
of searches across all three network sizes (40 000, 60 000,
80 000 nodes). For each network size, we randomly created

100 networks and performed the 14 SkABNet searches as
well as the equivalent 14 sets of SkipNet searches. The
message complexity represents the total number of search-
related messages that are transmitted for the single SkABNet
search (blue bar in the following figures) and the set of
SkipNet searches (red hatched bar).

Table II shows that the number of SkipNet searches that is
required to match a single SkABNet query varies significantly
and depends on how much matching nodes are scattered across
a network. It also stands out that for S1 and S4.1 only one
SkipNet search is necessary. Therefore, these searches behave
exactly the same.

Fig. 5 shows the effect of one or multiple selection operators
in a search query. A selection in the end requires less messages
than a selection in the middle or the beginning of a query.
For combinations of multiple selections, the effects add up
and even more messages are exchanged. The individual plots
in Fig. 5 also illustrate that SkABNet consistently uses less
messages than SkipNet. The savings range from about 14%
for selections in the beginning of the query to 7% when the
selection is at the end. For multiple selections SkABNet even
requires about 38% less messages than SkipNet.

Similar results can be observed for the range operator in
Fig. 6. Here, the effect is even greater. While SkipNet needs
to perform a large set of searches, SkABNet benefits from
the parallelization of the search process. For a single range
operator, on average about 75% of all messages can be saved
using mulitple ranges, this number increases to roughly 90%.

Finally, Fig. 7 shows the effect of wildcards (S4.2 and S4.3)
as well as combinations of multiple operators (S5.1 and S5.2).
Again, the enhanced search algorithm in SkABNet results in
significantly less messages compared to SkipNet and saves of
up to 52% using wildcards and 88% in the combination of
all search operators. Despite these promising numbers, we do

Authorized licensed use limited to: Bibliothekssystem Universitaet Hamburg. Downloaded on October 11,2023 at 07:58:40 UTC from IEEE Xplore. Restrictions apply.

(a) S2.1 Selection at the end (b) S2.2 Selection in the middle

(c) S2.3 Selection at the start (d) S2.4 Multiple Selections

Fig. 5: Searches utilizing the selection operator at different
positions within a search query.

(a) S3.1 Range at the end (b) S3.2 Range in the middle

(c) S3.3 Range at the start (d) S3.4 Multiple Ranges

Fig. 6: Searches utilizing the range operator at different
positions within a search query.

not want to emphasize to much on the absolute values here
as they are highly dependent on how the network is created,
how the parameter combination is chosen, and which searches
are executed. However, the results show that, in general, large
savings can be expected when using SkABNet.

Overall, we can see that efficiency of SkABNet searches de-
pends mainly on two parameters. First, the number of replaced
values defines how many basic SkipNet searches are needed to
achieve the same results. These differences can easily be seen
by searches utilizing range and wildcard operators. Selection

(a) S4.2 Wildcard in the middle (b) S4.3 Wildcard at the start

(c) S5.1 Combination of selection
and range

(d) S5.2 Combination of selec-
tion, range & wildcard

Fig. 7: Searches utilizing the wildcard operator at different
positions and searches composed of different search operators.

operators, often replace only a small number of known values,
therefore these searches can be expressed with a smaller set
of SkipNet searches. Second, Fig. 5c, 6c and 7b confirm that
search operators in the beginning of a search query reduce the
advantage of SkABNet over SkipNet. This can be explained
by the distribution of matching nodes within the network. If
a search ranges over multiple values within the first attribute
matching nodes are scattered over the network as shown in
Fig. 4a leading to more messages needed to reach matching
nodes. None the less worst-case szenario lead to the same
message complexity as in the standard SkipNet.

C. Attribute Composition

In Sec. IV-C, we have discussed how re-arranging attributes
in the identifiers impacts the search efficiency. As a last part
of our evaluation, we now provide a quantitative example to
demonstrate this effect. Therefore, we created three search
queries that each benefits form a different composition of
attributes and match 50 publishers. We then started three
different SkABNets each containing 50 000 publishers. The
first provided a single attribute composition only beneficial
for the first search. The second SkABNet added an additional
compositions, therefore doubleing the network size, but having
beneficial compositions for the first and second search. Lastly
a third SkABNet defining an additional composition, so that
each search query has the most beneficial attribute order. As
before experiments were repeated 100 times.

Fig. 8 shows how many search-related messages are trans-
mitted for each individual search within the SkABNet con-
taining one, two, or three compositions (x-axis) to find the
50 relevant nodes. When only a single composition is started,
Search #1 performs well, while the other two suffer from the

Authorized licensed use limited to: Bibliothekssystem Universitaet Hamburg. Downloaded on October 11,2023 at 07:58:40 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: Message complexity for the three search queries within
three SkABNet providing different attribute compositions.

relevant nodes being scattered across the network (hatched
boxes). Within the second SkABNet with two attribute com-
positions, Search #2 performs well, too. Finally, within the
SkABNet providing three different compositions and therefore
containing 150 000 nodes, all three search queries perform
well and the total number of search-related messages across
all three searches can be reduced by 50%.

Even though this scenario has been tailored to this particular
use case, it shows the relevance of selecting ”good” attribute
composition. The question of what is a good composition
needs to be answered for each context individually. It also sug-
gests that starting multiple compositions can improve search
efficiently significantly at linear cost for each node.

VI. CONCLUSION

In this paper, we presented SkABNet as a distributed data
structure based on SkipNets [11] and specifically introduced
attribute-based identifiers for IoT data streams in order to
increase the efficiency of search query executions. For that,
SkABNet introduces four search operators that allow for more
complex attribute-based search queries and allow subscribers
of data streams to better express required data. In a related
qualitative evaluation, we demonstrated that, e.g., utilizing
these complex search queries the number of messages needed
to find all matching publishers can be reduced by up to 90%.
To further increase efficiency across different search queries,
publishers are represented by multiple attribute compositions.
We could also demonstrate that providing attribute compo-
sitions for most common search queries reduces the overall
search messages by roughly 50%.

Future evaluations shall concentrate on our SkABNet im-
plementation of the SkABNet method within a deployed
IoT sensor network - focusing especially on its resilience
against connectivity issues and message loss. In addition,
we will investigate self-managed attribute compositions. Cur-
rently, attribute compositions are defined when the SkABNet

is initialized, which means that most common search queries
must already be known. In the future, publishers shall con-
tinuously analyze occurring searches and coordinate starting
more efficient compositions automatically whenever needed.

REFERENCES

[1] M. Achir, A. Abdelli, L. Mokdad, and J. Benothman, “Service discovery
and selection in iot: A survey and a taxonomy,” Journal of Network and
Computer Applications, vol. 200, p. 103331, 2022.

[2] R. Krishnamurthi, A. Kumar, D. Gopinathan, A. Nayyar, and B. Qureshi,
“An overview of iot sensor data processing, fusion, and analysis tech-
niques,” Sensors, vol. 20, no. 21, p. 6076, 2020.

[3] T. A. Butt, I. Phillips, L. Guan, and G. Oikonomou, “Adaptive and
context-aware service discovery for the internet of things,” in Internet
of Things, Smart Spaces, and Next Generation Networking: 13th In-
ternational Conference, NEW2AN 2013 and 6th Conference, ruSMART
2013. Proceedings. Springer, 2013.

[4] Y.-W. Kuo, C.-L. Li, J.-H. Jhang, and S. Lin, “Design of a wireless
sensor network-based iot platform for wide area and heterogeneous
applications,” IEEE Sensors Journal, vol. 18, no. 12, 2018.

[5] W. Osamy, A. M. Khedr, and A. Salim, “Adsda: adaptive distributed
service discovery algorithm for internet of things based mobile wireless
sensor networks,” IEEE Sensors Journal, vol. 19, no. 22, 2019.

[6] H. Moeini, I.-L. Yen, and F. Bastani, “Efficient caching for peer-to-
peer service discovery in internet of things,” in 2017 IEEE International
Conference on Web Services (ICWS). IEEE, 2017, pp. 196–203.

[7] A. Rowstron, P. Druschel, and R. Guerraoui, “Pastry: Scalable, Decen-
tralized Object Location, and Routing for Large-Scale Peer-to-Peer Sys-
tems,” 18th IFIP/ACM International Conference on Distributed Systems
Platforms, pp. 329–350, 2001.

[8] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup
protocol for internet applications,” IEEE/ACM Transactions on network-
ing, vol. 11, no. 1, pp. 17–32, 2003.

[9] B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph, “Tapestry : An Infras-
tructure for Fault-tolerant Wide-area Location and Routing,” Science,
vol. 74, no. April, p. 46, 2001.

[10] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker,
“A scalable content-addressable network,” Computer Communication
Review, vol. 31, no. 4, pp. 161–172, 2001.

[11] N. J. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman,
“Skipnet: A Scalable Overlay Network with Practical Locality Prop-
erties,” Proceedings of the Fourth USENIX Symposium on Internet
Technologies and Systems, vol. 5, p. 9, 2003.

[12] J. Aspnes and G. Shah, “Skip graphs,” Proceedings of the Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 384–393, 2003.

[13] S. Cirani, L. Davoli, G. Ferrari, R. Léone, P. Medagliani, M. Picone,
and L. Veltri, “A scalable and self-configuring architecture for service
discovery in the internet of things,” IEEE internet of things journal,
vol. 1, no. 5, pp. 508–521, 2014.

[14] S. Cirani and L. Veltri, “Implementation of a framework for a dht-based
distributed location service,” in 2008 16th International Conference on
Software, Telecommunications and Computer Networks. IEEE, 2008.

[15] M. Picone, M. Amoretti, and F. Zanichelli, “Geokad: A p2p distributed
localization protocol,” in 8th IEEE International Conference on Perva-
sive Computing and Communications Workshops. IEEE, 2010.

[16] F. Paganelli and D. Parlanti, “A dht-based discovery service for the
internet of things,” Journal of Computer Networks and Communications,
vol. 2012, 2012.

[17] W. Pugh, “Skip lists: a probabilistic alternative to balanced trees,”
Communications of the ACM, vol. 33, no. 6, pp. 668–676, 1990.

[18] J. Li, N. Zaman, and H. Li, “A decentralized locality-preserving context-
aware service discovery framework for internet of things,” in 2015 IEEE
International Conference on Services Computing. IEEE, 2015.

[19] Y. Ishi, Y. Teranishi, M. Yoshida, S. Takeuchi, S. Shimojo, and S. Nishio,
“Range-key extension of the skip graph,” in 2010 IEEE Global Telecom-
munications Conference GLOBECOM 2010. IEEE, 2010, pp. 1–6.

[20] R. Banno and K. Shudo, “An efficient routing method for range queries
in skip graph,” IEICE TRANSACTIONS on Information and Systems,
vol. 103, no. 3, pp. 516–525, 2020.

[21] A. Varga and R. Hornig, “An overview of the omnet++ simulation
environment.” ICST, 5 2010.

Authorized licensed use limited to: Bibliothekssystem Universitaet Hamburg. Downloaded on October 11,2023 at 07:58:40 UTC from IEEE Xplore. Restrictions apply.

		2023-08-28T06:41:01-0400
	Preflight Ticket Signature

